Recent results from LHCf

G. Mitsuka (Nagoya University)
on behalf of the LHCf Collaboration

UHECR2012, Feb 13–16, CERN
Outline

- Introduction and Physics motivation
- Status of LHCf
- Photon event analyses
 - 900GeV photon analysis
 - 7TeV π^0 analysis
- Conclusions and Future prospects
Introduction and Physics motivation

- Zero degree instrumentation slot at 140m away from IP1(ATLAS).
- p–p collision at $\sqrt{s}=14\text{TeV}$ corresponds to $E_{\text{lab}}=10^{17}\text{eV}$.
- Detectors are located at the best position to measure the large energy flow that strongly contributes the air-shower development.
Status of LHCf

Physics program at CERN

2004, 2006, and 2007
- Calibration at SPS

 \(\text{(NIM A 671 (2012) 129–136)} \)

2008
- First data taking at 900GeV (only FC)

2009
- First data taking at 900GeV

2010
- Physics program at 900GeV/7TeV was completed

 \(\text{(Luminosity : JINST 7 T01003 (2012)} \)

 \(7\text{TeV photon : Phys. Lett. B 703 128-134 (2011))} \)

- Post-calibration at SPS

2012
- Possibly pA run?

 \(\text{(CERN-LHCC-2011-015 ; LHCC-I-021)} \)

R&D for 14TeV run

2009, 2010
- Beam test of GSO scintillator at HIMAC (JAPAN, Chiba)

 \(\text{(JINST 6 T0900 (2011))} \)

2011
- Beam test of the LHCf Arm1 detector with GSO scintillator at HIMAC (JAPAN, Chiba)

Poster contributions
- The current status of LHCf experiment and Future plan (K. Kawade)
- LHCf plan for p-Pb forward particle measurement (T. Sako)
Photon event analysis

- Gain correction
- Peak search (as 1-hit)
- 1st energy reconstruction
- Peak search (multi-hit)
- Shower leakage & 2nd energy rec.
- Particle identification

- E<80(10)GeV → Single-hit
- E>80(10)GeV → Multi-hit

- Multi-hit
 - Large tower
 - 40mm

- Single-hit
 - Small tower
 - 20mm

- 1st energy reconstruction is needed to remove low-energy events where multi-hit selection efficiency is quite low.
- Only single-hit events are used in the following physics analysis, since the performance of energy reconstruction of multi-hit events is still worse.
Photon event analysis

- Gain correction
- Peak search (as 1-hit)
- 1st energy reconstruction
 - E ≤ 80(10)GeV
 - Peak search (multi-hit)
 - E > 80(10)GeV
- Single-hit
- Multi-hit
- Shower leakage & 2nd energy rec.
- Particle identification

- 1st energy reconstruction is needed to remove low-energy events where multi-hit selection efficiency is quite low.
- Only single-hit events are used in the following physics analysis, since the performance of energy reconstruction of multi-hit events is still worse.
Photon event analysis

- **Gain correction**
- **Peak search (as 1-hit)**
- **1st energy reconstruction**
 - E > 80(10)GeV
 - E < 80(10)GeV
- **Peak search (multi-hit)**
 - Single-hit
 - Multi-hit
 - Shower leakage & 2nd energy rec.
 - Particle identification

- **Large tower**
- **Multi-hit**
- **Small tower**
- **Single-hit**

- 1st energy reconstruction is needed to remove low-energy events where multi-hit selection efficiency is quite low.
- Only single-hit events are used in the following physics analysis, since the performance of energy reconstruction of multi-hit events is still worse.
900GeV photon analysis

Photon like events are categorized into two rapidity ranges:
- $\eta > 10.15$
- $8.77 < \eta < 9.46$

Unavoidable PID inefficiency and impurity are corrected in each bin.
Integral luminosity $\sim 0.3\,\text{nb}^{-1}$, and uncertainty is 21%.
Independent data analysis using the Arm1 and Arm2 data show an overall good agreement within their systematic uncertainties.
Photon like events are categorized into two rapidity ranges:
- $\eta > 10.15$
- $8.77 < \eta < 9.46$

Unavoidable PID inefficiency and impurity are corrected in each bin.

Integral luminosity $\sim 0.3\text{nb}^{-1}$, and uncertainty is 21%.

Independent data analysis using the Arm1 and Arm2 data show an overall good agreement within their systematic uncertainties.
Photon like events are categorized into two rapidity ranges:
- \(\eta > 10.15 \)
- \(8.77 < \eta < 9.46 \)

Unavoidable PID inefficiency and impurity are corrected in each bin.

Integral luminosity \(\sim 0.3 \text{nb}^{-1} \), and uncertainty is 21%.

Independent data analysis using the Arm1 and Arm2 data show an overall good agreement within their systematic uncertainties.
Photon like events are categorized into two rapidity ranges:
- $\eta > 10.15$
- $8.77 < \eta < 9.46$

Unavoidable PID inefficiency and impurity are corrected in each bin.

Integral luminosity ~ 0.3nb^{-1}, and uncertainty is 21%.

Independent data analysis using the Arm1 and Arm2 data show an overall good agreement within their systematic uncertainties.
900GeV photon analysis

Combined data vs MC simulations

Preliminary
900GeV photon analysis

Suppose a Pt of \(\sqrt{s} = 900\text{GeV} \) events can be scaled to the Pt at \(\sqrt{s} = 7\text{TeV} \) as

\[
P_T(\sqrt{s} = 7\text{TeV}) = P_T(\sqrt{s} = 900\text{GeV}) \frac{7\text{TeV}}{900\text{GeV}}.
\]

Then the spectrum inside \(R = 5\text{mm} \) at \(\sqrt{s} = 7\text{TeV} \) would be equivalent to that \(R < 38.9\text{mm} \) at \(\sqrt{s} = 900\text{GeV} \).

No systematic error is considered in both collision energies, although this treatment may not change an impression of the comparison.

Good agreement of each \(X_F \) scaling spectrum indicates a weak Pt dependence of the energy spectrum.
7TeV π⁰ analysis

- Standard LHCf photon reconstruction
- Two-photon selection
- Invariant mass reconstruction
- Signal window
- Sideband
- BG subtraction
- Unfolding (det. response correction)
- Acceptance correction
- Combining Arm1 and Arm2

Event example of π⁰ candidate

- Imperfect detector response to π⁰ events should cause a large distortion of spectra, thus spectra must be corrected for the detector response.
- The LHCf detector cannot cover 2π azimuthally. Acceptance inefficiency is corrected as a function of E_π and P_T.
7TeV π^0 analysis

Type-I
- Large tower
 - π^0
 - Large angle
 - Simple
 - Clean
 - High-stat.

Type-II
- Large tower
 - π^0
 - Small angle
 - Large BG
 - Low-stat.
 - but can cover
 - High-E
 - Large-\(P_T\)

Type-I sample
- LHCf-Arm1

Type-II sample
- LHCf-Arm1
 - Type-II at large tower
 - Type-II at small tower

LHCf-Arm1 Data 2010
- Preliminary
 - BG
 - Signal
7TeV π^0 analysis

Type-I
- Large tower
- π^0
- Large angle
- Simple
- Clean
- High-stat.

Type-II
- Large tower
- π^0
- Small angle
- Large BG
- Low-stat.
- but can cover
 - High-E
 - Large-P_T

Type-I sample

- **Type-I** LHCf-Arm1
- Preliminary

Type-II sample

- **Type-II** at large tower
- LHCf-Arm1
- Data 2010

LHCf-Arm1 π0 sample

- **Type-II** at small tower
- BG
- Signal
- Preliminary
7TeV π⁰ analysis

- Remaining background spectrum is estimated using the sideband information, then the BG spectrum is subtracted from the spectrum made in the signal window.

\[\text{Signal} = f(E, P_T)^{\text{signal}} - \]

\[f(E, P_T)^{\text{BG}} \frac{\int_{\hat{M} - 3\sigma_u}^{\hat{M} + 3\sigma_u} \mathcal{L}_{BG} dM}{\int_{\hat{M} - 6\sigma_l}^{\hat{M} - 3\sigma_l} \mathcal{L}_{BG} dM + \int_{\hat{M} + 3\sigma_u}^{\hat{M} + 6\sigma_u} \mathcal{L}_{BG} dM} \]

- Detector responses are corrected by an unfolding process that is based on the iterative Bayesian method.

(G. D’Agostini NIM A 362 (1995) 487)

- Detector response corrected spectrum is proceeded to the acceptance correction.
7TeV π^0 analysis

- No energy-scale systematic uncertainty quoted.
- Consistent spectra are obtained between Arm1 and Arm2.
7TeV π⁰ analysis

7TeV photon spectra by LHCf

Photon analysis and π⁰ analysis compensate each missing information.
- High energy photon originates from large P_T π⁰ events.
- Photon spectrum includes a contribution from other hadrons/baryons.

Conclusions and Future prospects

- LHCf has measured the energy and transverse momentum spectrum of the forward emitted particles at the 900GeV and 7TeV proton–proton collisions.

- Feynman scaling spectrum of the 900GeV and 7TeV photon events agree well each other. This may indicate a weak dependence of energy spectrum on its P_T.

- Consistent π^0 spectra are obtained between the Arm1 and Arm2 detector. Combined spectra and a comparison with various hadronic interaction models will be available soon.

- Many analyses are ongoing:
 - Photon P_T analysis
 - Hadron event analysis
 - p–Pb capability
Backup
7TeV photon analysis

LHCf $\sqrt{s}=7$TeV
Gamma-ray like
$\eta > 10.94$, $\Delta \phi = 360^\circ$

LHCf $\sqrt{s}=7$TeV
Gamma-ray like
$8.81 < \eta < 8.99$, $\Delta \phi = 20^\circ$
7TeV π^0 analysis

- **LHCf $\sqrt{s}=7$TeV π^0**
 - $9.0 < y < 9.2$
 - $9.2 < y < 9.4$
 - $9.4 < y < 9.6$
 - $9.6 < y < 10.0$

MC/Data

- p_T [GeV/c]
- p_T [GeV/c]
7TeV π^0 analysis
900GeV photon analysis
900GeV photon analysis

• Suppose a P_T of $\sqrt{s}=900\text{GeV}$ events can be scaled to the P_T at $\sqrt{s}=7\text{TeV}$ as

$$P_T(\sqrt{s} = 7\text{TeV}) = \frac{7\text{TeV}}{900\text{GeV}} \cdot P_T(\sqrt{s} = 900\text{GeV}).$$

• Then the spectrum inside $R=5\text{mm}$ at $\sqrt{s}=7\text{TeV}$ would be equivalent to that $R<38.9\text{mm}$ at $\sqrt{s}=900\text{GeV}$.

• No systematic error is considered in both collision energies, although this treatment may not change an impression of the comparison.

• Good agreement of each X_F scaling spectrum indicates a weak P_T dependence of the energy spectrum.
900GeV photon analysis

EPOS

LHCf Arm1 Photon Like

![EPOS Graph](image)

- $\sqrt{s}=7\text{TeV} (\eta > 10.94)$
- $\sqrt{s}=900\text{GeV Scaled to } \sqrt{s}=7\text{TeV} (\eta > 8.88)$

QGSJET II-03

LHCf Arm1 Photon Like

![QGSJET Graph](image)

- $\sqrt{s}=7\text{TeV} (\eta > 10.94)$
- $\sqrt{s}=900\text{GeV Scaled to } \sqrt{s}=7\text{TeV} (\eta > 8.88)$