名古	屋 大学 三好研究	昭室した	研究室
氏名	藤井亮佑	学年/職名	M2
発表タイトル	Statistical analysis for trunk structure of ring current ions using Arase ion		
	observations		
	The distribution of ring current ions is determined due to transportation,		
	acceleration and loss process in the magnetosphere. Various structures on		
	energy spectrum are seen along the satellite orbit. Besides well-known		
	structures such as "nose" or "wedge" structures, "trunk" structures ar		
発表要旨	newly found by Van Allen Probes. The structure looks like elephant trunk		
	and the energy of peak flux decreases toward the Earth. A case study by		
	Van Allen Probes showed that "trunk" structures are seen in energy		
	spectrums of helium and oxygen. However, detail characteristics of "trunk"		
	have not been well understood, and statistical survey using the long-term		
	observation data is necessary. In this study, we investigate characteristics		
	of "trunk" using Low-energy particle experiments-ion mass analyzer		
	(LEPi) / Medium-energy particle experiments-ion mass analyzer (MEP-i)		
	onboard the Arase satellite from April 2017 to March 2019. A number of		
	trunk structures in helium and oxygen ions as well as protons are identified.		
	We analyze the geomagnetic activity, local time, latitude and L-value		
	dependences of the trunk. The minimum L-shell of trunk is distributed		
	mostly around $L = 2.0 - 2.5$ and off-equator, extending from dusk region to		
	pre-midnight region. The average of the minimum Al index and maximum		
	Kp index during 1 day before observations of helium trunk structure are \sim		
	-400 nT and 2+ respectively. Previous studies suggested that impulsive		
	enhanced electric field or a temporal gap of injection from the tail region		
	combined with charge exchange causes formation of the "trunk". Beside		
	"trunk" structures, more t	ypical "nose"	events and "inverse trunk" in which
	the typical energy gets inc	crease in the lo	ower L-shell are also found from the
	Arase observations. We show statistical characteristics of "trunk" and		
	"inverse trunk" from the Arase observations. Moreover, we discuss how		
	charge exchange affects the formation of the "trunk" by comparing with		
	RAM-SCB simulations.		

キーワード	• ERG
•	・リングカレント
キーポイント	•