総合研究大学院大学 冨川研究室

氏名	吉田理人	学年/職名	M1
発表タイトル	最新の気象再解析デ	ータ ERA5 にま	ける南極域での大気重力波再現性
	数値予報モデルで得られる気象場に観測データを同化して得られる 気象場の全球格子点データを再解析データと呼ぶ。数値予報モデルで は格子点間隔よりスケールの小さい重力波は直接再現できないため、		
	パラメタリゼーションによってその効果を取り込む必要がある。一方、		
発表要旨	モデルの高解像度化が進み、再解析データ中で陽に表現される重力波		
	の運動量フラックスやエネルギーを推定し観測と比較する試みも行わ		
	れるようになってきた。しかし、観測で得られる値よりも振幅・強度		
	が小さいという報告もされており、再解析中の重力波による効果の再		
	現性を定量的に評価する必要がある。		
	南極大陸周辺部は重力波のホットスポットと呼ばれているが、その		
	運動量フラックスやエネルギーの観測が不足しており、モデルの不確		
	実性の要因の一つとなっている。そこで、南極域の重力波による運動		
	量輸送を推定できるスーパープレッシャー気球観測が計画されてい		
	る。スーパープレッシャー気球は等密度面を空気塊とともに動くため、		
	成層圏下部における重力波の全周期帯(約5分~十数時間)の運動量		
	フラックスや運動・ポテンシャルエネルギーの情報を面的に得ること		
	ができる。		
	本研究では、最新の気象再解析データ ERA5 を既存の様々な観測と比		
	較し、各高度、各周期、地形性・非地形性毎での再解析データにおけ		
			順に実施予定の南極での重力波のス
		気球観測との比	:較に向けた予備調査を実施するこ
	とを目的とする。		
·	・重力波		
	・再解析データ		
キーポイント	・スーパープレッシ	ャー気球	
	• 南極		