名古屋	大学	電磁気圏	研究部	
氏名		惣宇利卓弥	学年/職名	M2
発表タイト	ル桶	磁気嵐時におけるス	トーロラ帯や中	コ緯度電離圏での TEC 変動と
	S	uperDARN レーダー	で観測された	電離圏エコーとの関係
	In order to investigate a global distribution of ionospheric irregul			ion of ionospheric irregularities in the
	a	uroral zone and midlatit	udes during a geor	nagnetic storm which occurred on May
	2	7-28, 2017 with the mi	inimum SYM-H v	value of -140 nT, we analyzed global
	n	avigation satellite syst	tem (GNSS) tota	al electron content (TEC) data and
発表要旨	n	nidlatitude SuperDARN	radar data at Adal	x Island East (ADE), Adak Island West
	(4	ADW), Blackstone (BK	S), Christmas Vall	ey East (CVE), Christmas Valley West
	(CVW), Fort Hays East ((FHE), Fort Hays	West (FHW), Hokkaido West (HKW),
	a	nd Hokkaido East (HO	K). In this study,	we calculate the GNSS-Rate of TEC
	Iı	ndex (ROTI) as a good	indicator of existent	ence of ionospheric irregularities with
	tł	ne TEC data. Here, ROT	T is defined as the	standard deviation of rate of TEC (the
	Т	EC fluctuations per mi	nute) [Pi et al., 1	997]. We compared two-dimensional
	р	olar maps between the F	ROTI and the iono	spheric field-aligned irregularity (FAI)
	e	echo intensity observed by the SuperDARN radars. The ROTI enhancement		
	a	ppears at the auroral ova	al and the equatory	ward wall of midlatitude trough during
	tł	ne main phase of the ge	omagnetic storm	from 22:00 UT on May 27 until 04:00
	U	T on May 28. The FAI	echoes with the in	ntensity of more than 15-20 dB is also
	0	bserved with correspon	dence to the enha	nced ROTI region in the afternoon to
	n	nidnight sectors (14 - 2	3 h MLT: magnet	ic local time) in North America. The
	e	nhanced ROTI and FA	I regions move ea	quatorward as the geomagnetic storm
	d	evelops. However, after	04:00 UT on May	28, the ionospheric FAI echoes almost
	d	isappear in spite of exis	stence of the enha	nced ROTI region. This suggests that
	tł	ne ionospheric irregular	ity with decamete	er-scale disappears after 04:00 UT on
	N	lay 28, or that radio wa	ves transmitted by	y the SuperDARN radars are absorbed
	b	y enhanced plasma dens	sity in the D-regio	n associated with high energy electron
	р	recipitation after 04:00	UT on May 28. He	owever, we need further studies on the
	iı	ncreasing electron densi	ty in D-region du	ring this period in order to verify this
	h	ypothesis.		
		More interestingly, an	other enhanced H	ROTI region with a scale of 600 km

	appears at 30° geomagnetic latitude (GMLAT) in North America at 1:00 UT on
	May 28, corresponding to the main phase of the geomagnetic storm. The enhanced
	ROTI region almost coincides with a region where TEC decreases by 15 TECU.
	This observational fact suggests that the plasma bubble having the enhanced ROTI
	value extends up to 50°N (GMLAT) at 2:30 UT during the main phase of the
	geomagnetic storm. After that, the plasma bubble propagates westward at a
	velocity of 355 m/s and enters the midlatitude trough near 4:00 UT. When the
	enhanced ROTI region enters the field of view of the SuperDARN radar at FHE
	near 2:30 UT, FAI echoes are suddenly observed at the location of the ROTI
	enhancement. The FAI echoes in the enhanced ROTI region moved westward at a
	velocity of approximately 300 m/s. This velocity almost coincides almost with the
	westward velocity of the enhanced ROTI region.
	From these analysis results, it is suggested that the spatial distribution of
	ionospheric irregularities as seen in the ROTI data has good correlation with that
	of the FAI echoes observed by the SuperDARN radars, and that the plasma
	bubble originating from the equatorial ionosphere can be observed by
	midlatitude SuperDARN radars during large geomagnetic storms.
キーワード	・全電子数
•	 ・電離圏
キーポイント	• SuperDARN